Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuroscience Bulletin ; (6): 145-155, 2019.
Article in English | WPRIM | ID: wpr-775481

ABSTRACT

The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved. One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.


Subject(s)
Animals , Humans , Autonomic Nervous System , Physiology , Cell Differentiation , Physiology , Cell Lineage , Physiology , Homeostasis , Physiology , Nervous System , Neurons , Physiology
2.
Electron. j. biotechnol ; 30: 48-57, nov. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1021453

ABSTRACT

Background: Availability of related rice species is critical for rice breeding and improvement. Two distinct species of domesticated rice exist in the genus Oryza: Oryza sativa (Asian rice) and Oryza glaberrima (African rice). New rice for Africa (NERICA) is derived from interspecific crosses between these two species. Molecular profiling of these germplasms is important for both genetics and breeding studies. We used 30 polymorphic SSR markers to assess the genetic diversity and molecular fingerprints of 53 rice genotypes of O. sativa, O. glaberrima, and NERICA. Results: In total, 180 alleles were detected. Average polymorphism information content and Shannon's information index were 0.638 and 1.390, respectively. Population structure and neighbor-joining phylogenetic tree revealed that 53 genotypes grouped into three distinct subpopulations conforming to the original three groups, except three varieties (IR66417, WAB450-4, MZCD74), and that NERICA showed a smaller genetic distance from O. sativa genotypes (0.774) than from O. glaberrima genotypes (0.889). A molecular fingerprint map of the 53 accessions was constructed with a novel encoding method based on the SSR polymorphic alleles. Ten specific SSR markers displayed different allelic profiles between the O. glaberrima and O. sativa genotypes. Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.


Subject(s)
Oryza/genetics , Genetic Variation , Polymorphism, Genetic , Breeding , DNA Fingerprinting , Microsatellite Repeats , Genotype
3.
Clinics ; 72(10): 588-594, Oct. 2017. tab, graf
Article in English | LILACS | ID: biblio-890681

ABSTRACT

OBJECTIVES: With the development of next-generation sequencing (NGS) technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. METHODS: We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. RESULTS: From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0%) were female, and 91 (58.0%) were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6%) had at least one identified gene alteration. Twenty-four patients (15.2%) underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7%) had partial responses, two (8.3%) had stable disease, and 17 (70.8%) had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. CONCLUSION: We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Genomics/methods , Neoplasms/drug therapy , Neoplasms/genetics , Sequence Analysis, DNA/methods , Disease Progression , Disease-Free Survival , Genomics/trends , Kaplan-Meier Estimate , Molecular Targeted Therapy/methods , Neoplasm Metastasis , Neoplasms/mortality , Neoplasms/pathology , Precision Medicine/methods , Receptor, ErbB-2/antagonists & inhibitors , Reproducibility of Results , Sequence Analysis, DNA/trends , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL